Zombie Cockroaches

Zombie Cockroaches
By Lance Gritton MAEd
Normally I try to be clever with my titles to invite the curious to read, but this week as we say in the lab “it is what it is” and nothing more. We’re talking zombie cockroaches, and it’s not even the Election er Halloween yet!
A few years ago, some engineering students put tiny side thrusting rockets on a Madagascar Hissing cockroach, a rather large insect. The engineering aspects were to track how stable a six legged robot could be even when rockets were trying to move it off course. In reality, some grad student said “Rockets on a cockroach? Yeh!” Ok. Maybe not, but I would have. A six legged all terrain robot could handle odd stresses and carry more varied weapons and instruments than a two or four legged robot could. So by measuring how well the roach could walk in a straight line with sideways rockets blasting, it showed just that.
Tiny insect sized sensors have been around for a decade, including a camera that could be mounted on a roach as well. Now some of you are asking, why cockroaches and not some cuddly other insect. Well cockroaches are big, strong and breed like…roaches, so they are used quite a bit in the miniature world. Roaches are also social insects, with a society just as complex as many wasp species. Young roaches that are raises alone, have trouble when put in a social nest they normally would grow up in. We find similar behavior in rats and apes. And roaches groom themselves often, making them a clean species (except they defecate everywhere to mark nest mates paths, and that’s efficient for roaches, but yuck for us).
One thing scientists and engineers look for inspiration is evolution. A gorgeous creature is an electric emerald green with some red accents…a beauty by any standards. This is the emerald cockroach wasp. She is about 1/50th the size of the roaches she hunts, and could never carry one or even drag one off like her cousin the tarantula hawk. But she needs to get a cockroach to her den so she can lay an egg on it. To do so, she is a micro-surgeon with wings.
She has a long flexible stinger and special venom. When she spots a victim (a cockroach in case you haven’t been keeping up), she stings it in its ganglion, or nerve bunch that is kind of like a brain. This makes the cockroach immediately start to groom itself, and then it gets a little groggy, and the front legs stop working. She then stings it again, and chews off half of each of the roaches antennae. Some scientists think she does this to replenish the proteins needed for more venom. Whatever the case, she then grasps the antennae and leads the now zombie cockroach along with its antenna acting like a leash, and walks it to her nest. She then lays a single egg and the roach lays down and waits to be eaten skillfully from the inside out; the larva avoids all organs until last and then pupates and emerges in about a week as a new zombie maker. (That is so cool!)
A couple of engineers at NC State wanted to try something, less chemical, and nerdier. Using magnets and medical grade glue, they affixed back pack like integrated circuits, with electrodes glued on to the roach’s antennae. Using a wireless transmitter, they were able to “buzz” the roach’s antennae, right or left or both. They were able to drive the insect along a track and make it move just like an RC car. Now if you’re wondering why this is not just a do it yourself Frankenstein kit, there are real reasons for this wireless roach research (cool band name), read on.
A few years ago, an invention called Brain Port came out to allow blind people to see using the senses on the tongue. A sensor was clipped to the tongue, and the wires sent down to a control pack held in the hand. The next generation that came around was muscle controlled prosthetic limbs, which evolved into limbs that could be controlled with thought. But these are very cool experiments that really work on the nervous system. What about the brain itself?
Scientists have implanted chips into animal brains, with the most recent a monkey that allow neural connections to be made. They wired up the cerebral cortex, and stimulated the connection as the monkey was learning new patterns and shapes. By stimulating these two layers they found the monkeys learned and remembered things at an increase of up to 75%. This might be the steps to finding a cure for dementia and other brain maladies.
I’ll take two please…
Later Ya’ll



About gollygwiz

Ex-Navy Submariner, actor, musician, science researcher, high school science teacher and newspaper columnist. Science is my passion, quantum mechanics is my higher power and music is my refuge.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: